
Software testingSoftware testing
(with emphasis on JUnit testing)(with emphasis on JUnit testing)

Martin SengerMartin Senger

m.senger@cgiar.orgm.senger@cgiar.org

IRRI (International Rice Research Institute), IRRI (International Rice Research Institute), 

PhilippinesPhilippines



LetLet’’s start from the end...s start from the end...

•• What we want to achieveWhat we want to achieve

–– To have software that behaves wellTo have software that behaves well

–– To be able to maintain this software at To be able to maintain this software at 

relatively low costrelatively low cost

•• Reasonably well known path to this goal is Reasonably well known path to this goal is 

software testingsoftware testing

–– But less known (or agreed on) is how to test, But less known (or agreed on) is how to test, 

what to test, when to test and who testswhat to test, when to test and who tests



A bit of theory (just one slide)A bit of theory (just one slide)

•• Software testing (ideally) consists ofSoftware testing (ideally) consists of
–– Unit testingUnit testing

•• test small(est) program components (often methods) test small(est) program components (often methods) 
by programmersby programmers

–– Integration testingIntegration testing
•• software modules are integrated and tested togethersoftware modules are integrated and tested together

•• here (usually) belong any tests that requirehere (usually) belong any tests that require
–– access to databasesaccess to databases

–– network communicationnetwork communication

–– System testingSystem testing
•• test of a complete system, including hardware (and test of a complete system, including hardware (and 

endend--users patience)users patience)



Testing is not only a quality checkTesting is not only a quality check

•• Testing has a Testing has a documentary valuedocumentary value

–– it shows how to use your codeit shows how to use your code

–– it stays close to the code (as with JavaDoc)it stays close to the code (as with JavaDoc)

•• Development with testing is a Development with testing is a design design 

techniquetechnique

–– if it not easy to write unit tests for your if it not easy to write unit tests for your 

software, it may indicate that the whole software, it may indicate that the whole 

design is faultydesign is faulty



Testing is not a fun, and it costsTesting is not a fun, and it costs

•• (My) Four moods of software development(My) Four moods of software development
–– Designing a component is a Designing a component is a funfun

–– Implementing it is a Implementing it is a workwork

–– Writing tests is the Writing tests is the dark sidedark side of my jobof my job

–– Documenting it is a Documenting it is a nightmarenightmare

•• Nobody knows how much it costsNobody knows how much it costs
–– but it is probably about 25% of your coding timebut it is probably about 25% of your coding time

–– thatthat’’s why you should test when it is worth tos why you should test when it is worth to

–– there are some estimates indicating that only there are some estimates indicating that only 
about 20% of developers uses unit testingabout 20% of developers uses unit testing



How we do it in GCP Java projectsHow we do it in GCP Java projects

•• Every project can be used Every project can be used bothboth from from 
commandcommand--line Ant, and from Eclipseline Ant, and from Eclipse

•• We encourage to use We encourage to use JUnit 4JUnit 4 testingtesting
–– easier to write tests for protected methodseasier to write tests for protected methods

–– classclass--scope setup and clean up methodsscope setup and clean up methods

–– much easier (and better) testing of exceptionsmuch easier (and better) testing of exceptions

–– testing performance and timeouts are possibletesting performance and timeouts are possible

–– still backward compatible with JUnit 3still backward compatible with JUnit 3

•• So far, we have not measured test coverageSo far, we have not measured test coverage
–– e.g. using Cobertura tool; e.g. using Cobertura tool; should we?should we?



Cobertura report exampleCobertura report example

http://cobertura.sourceforge.net/



To be more concrete...To be more concrete...

•• Each project has Each project has xmls/junit.xmlxmls/junit.xml AntAnt’’s files file

•• There is an AntThere is an Ant’’s task s task ant testant test--junitjunit that:that:

–– checks the presence of the JUnit librarychecks the presence of the JUnit library

–– compiles testscompiles tests

–– runs testsruns tests

•• Testing code is outside the main code treeTesting code is outside the main code tree

–– in in src/test/javasrc/test/java and and src/test/junitsrc/test/junit--resourcesresources

•• Optionally: each test class has code that allows Optionally: each test class has code that allows 
running tests outside of Ant or from a JUnit 3 toolsrunning tests outside of Ant or from a JUnit 3 tools



Example of a test classExample of a test class
@Test

public void matchProperties() {
assertTrue (Config.addConfigPropertyFile (TEST_CONFIG_PROPS));
Properties props =

Config.getMatchingProperties ("grid.env", "org.classic.HelloWorld");
assertTrue ("Not a correct number of the matching properties.",

props.size() == 3);
assertEquals ("Matching properties mismatch.",

"ein", props.getProperty ("One"));
}

@Test
public void getStrings() {

assertTrue (Config.addConfigPropertyFile (TEST_CONFIG_PROPS));
String[] elems = Config.getStrings ("element", null, null);
assertFalse ("Returned array should not be null.", elems == null);
assertEquals ("Wrong size of the returned array.", 5, elems.length);

}



Running the tests Running the tests -- exampleexample

C:\Users\martin\Desktop\Pantheon Config>ant test-junit
Buildfile: build.xml
checkmaven:
initmaven:
init:
junit-init:
junit-present:
initeclipse:
config:
compile:
compile-tests:
do-junit:

[junit] Running org.build.LogTest
[junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 0.023 sec
[junit] Running org.generationcp.core.config.BasicUsageTest
[junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 0.022 sec
[junit] Running org.generationcp.core.config.ConfigTest
[junit] Tests run: 14, Failures: 0, Errors: 0, Time elapsed: 0.23 sec
[junit] Running org.generationcp.core.utils.RefResolverTest
[junit] Tests run: 2, Failures: 0, Errors: 0, Time elapsed: 0.108 sec

test-junit:

BUILD SUCCESSFUL
Total time: 3 seconds



(The) Frequently Asked Question(The) Frequently Asked Question

•• How can I test the GUI?How can I test the GUI?

–– Easy answer: It is not simple. Sometimes Easy answer: It is not simple. Sometimes 

even impossible. It is definitely not a unit even impossible. It is definitely not a unit 

testing.testing.

–– But you can make it easier by:But you can make it easier by:

•• Using Using better designbetter design of your applicationof your application

–– ModelModel--ViewView--Controller patternController pattern

–– Okay, but what else and what next?Okay, but what else and what next?

•• Well, I do not know, actually...Well, I do not know, actually...



Thank you...Thank you...

•• When you are completely exhausted by When you are completely exhausted by 

writing more and more test code because writing more and more test code because 

your boss insists and insists... tell him/her:your boss insists and insists... tell him/her:

–– A bus station is where a bus stops.A bus station is where a bus stops.

A train station is where a train stops.A train station is where a train stops.

On my desk I have a work station...On my desk I have a work station...

[copied from an Internet forum]


