IRRI-GRIMS: Tool for managing the largest rice collection

Ella Herrera TT Chang Genetic Resources Center, IRRI 2007 ICIS Developers' Workshop , SPARC, Canada

- Features
- Mapping of Genebank concepts/ objects to ICIS
- Advantages of Adopting ICIS Technology
- Current Activities

Overview

- IRRI Genetic Resources Information Management System
 - A data management tool for IRRI genebank that uses ICIS tools and application
 - An overhaul of legacy system (International Rice Genebank Information System/ IRGCIS)
 - Uses GMS, DMS, IMS and GRIMS-specific schema
 - Deployed at IRRI Genebank in January 2007
 - Developing GRIMS required migration of both program codes and data to new programming language and database schema

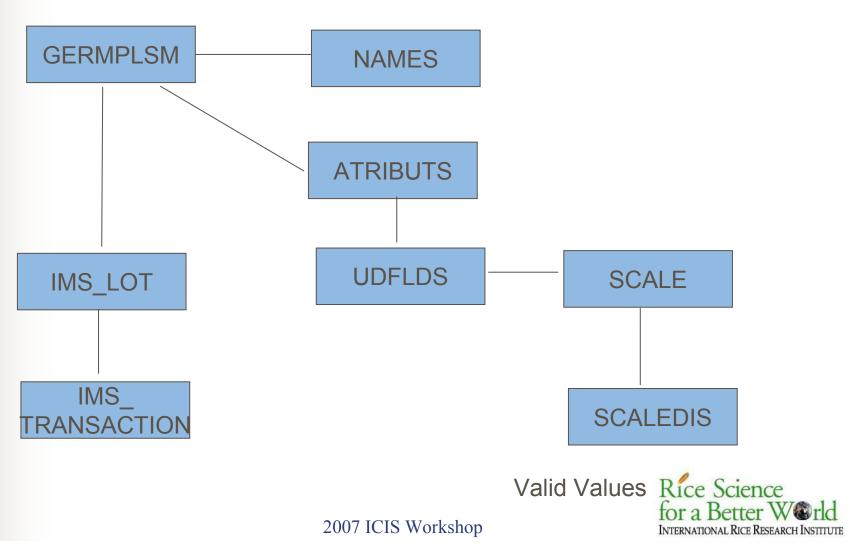
Features

- Incoming germplasm receipt and registration
- Seed selection for regeneration and characterization
- Seed distribution and seed request tracking (within genebank)
- Seed viability monitoring
- Automated inventory management using barcode technology and digital weighing scale
- Integration with other organizational unit's data within IRRI (i.e. Seed Health, Plant Breeding, and INGER)

- Incoming samples
- Germplasm acquisition method -> Imported
- Imported
 - Germplasm date (GDATE) is the acquisition date
 - Germplasm location is the holding institute -> TT Chang Genetic Resources Center (IRRI)
- Creation of germplasm group and source for collected samples
 - > Create a germplasm and attach all the collecting information to it
 - Set this germplasm as the group and source of the sample received by the genebank

- Accession
 - Identified through Management Group ID (MGID)
 - Start of management neighborhood where GID=MGID
 - Holding institute as the germplasm location
- Passport Data
 - Descriptive passport data are stored as germplasm ATTRIBUTES
 - Phenotypic passport data are stored in DMS
 - One study corresponds to one planting season
 - A single accession can have multiple characterization data due to multiple field trials
 - * Publicly available

- Names
 - Management name
 - Seed increase/ regeneration name
 - Donor accession number
 - IRRI received an accession from other genebank
 - Foreign accession number
 - IRRI donated accession to other genebank


- What should be the name state/ status of local names in their original form -or- of UNICODE names?
 - NSTAT Number indicating the storage type and status of the name
 - 1 Preferred name (must be ASCII) → Can we allow unicode names as the preferred one?
 - i.e. Lao script, cultivars with no English names
 - > 10 UNICODE names which are not preferred
 - Temporarily being used

- Seed inventory data
 - Seed lot information and transaction data are stored in ICIS IMS_LOT and IMS_TRANSACTION tables
- Distribution data
 - Request details such as the requestor information, plot details, origin, MTA status, etc are stored in DMS

Relationship Diagram: Names, Passport, Inventory

Advantages of Adopting ICIS Technology

- Genebank data integration to other institutional databases
 - Link to germplasm from other locations
 - Better use of essential information
- Easy access to germplasm generation information
 - Management of genetic identity
 - Tracking of germplasm history
- Open access to genebank data through development of web interface/ search engine

Genebank Needs

Development of web interface for more effective data sharing and exchanging

Web interface that :

- Searches for passport and phenotypic data
- Has an option to query only the studies that came from Genebank
 - Create a STUDY TYPE that corresponds to genebank characterization data (?)
- Handles seed request

Current Web Search

Passnort data - Characteristics of collection site Morpho-agronomic data					
Anther length (mm) - wild	Ligule pubescence - wild	☐ Ligule pubescence - wild			
Apiculus color at post-harvest	Ligule shape	☐ Ligule shape			
Apiculus color at reproductive	2nd leaf length (cm) - wild	2nd leaf length (cm) - wild			
Auricle color at vegetative	☐ Leaf length - cultivated	☐ Leaf length - cultivated			
Awn color	Lemma and palea color at anthesis - wild	Lemma and palea color at anthesis - wild			
Awn length (mm) at anthesis - wild	Lemma and palea color at post-harvest				
Awn presence at reproductive	Lemma and palea pubescence				
Blade color at vegetative	☐ Leaf senescence	ate			
Blade pubescence at vegetative	Leaf texture at 75 DAG - wild				
Basal leafsheath color at vegetative	☐ 2nd leaf width (cm) - wild	collected			
Collar color at vegetative - cultivated	☐ Leaf width - cultivated				
Chromosome number - wild	2nd leaf ligule length (mm) at 7 DAA - wild	ristics			
Culm angle at reproductive	☐ Maturity - cultivated				
Culm diam, of basal internode at reproductive	□ Node color				
Culm length at reproductive	Panicle axis at reproductive	ation			
Culm number (code) at reproductive - cultivated	☐ Texture of panicle axis at 7 DAA - wild				
Culm strength at harvest - wild	Panicle exsertion at reproductive				
Culm strength at reproductive - cultivated	Panicle length at post-harvest	100%			
Date at first flowering	Panicle length at reproductive - wild	position			
Date of seeding	Population composition - african cultivated	ity			
Distance (mm) panicle to spikelet at 7 DAA - wild	☐ Panicle shattering	(sq. meters)			
Endosperm type	☐ Panicle threshability				
Flag leaf angle at 7 DAA - wild	☐ Panicle type				
Flag leaf angle at reproductive - cultivated	Rhizome/stolon formation - wild				
Grain length (mm)	Seed coat color)			
Grain thickness (mm) - wild	Scent - cultivated	D			

STEP 2 - Select conditions **Accession list** Germplasm name list Browse... Browse. Send File Send File Pls. limit your entries to 1000! Pls. limit your entries to 1000! Specify conditions Passport data- Basic Acquisition date ☐ Sender's Firstname ☐ Sender's Lastname Donor Source country ☐ Species Scientific name Seed Source (country) Classification of O. sativa samples Seed Source (station) ☐ Variety name Previous designation Passport data - Collecting team Collecting institute Collection number Funding agency Collector(s) Firstname Collector(s) Lastname

Data Query results June 5, 2007

IRGC Acc.	Variety name	Species name	ACQ_DATE	DONOR_CODE	ORI_COUNTRY	PREV_NAME	SENDER_LNAME	SENDER_FNAME	VARLINE_TYPE	COLL_INST
53592	AC2864	O. SATIVA	05-MAR-80		IND		ROY	J. K.		
48977	ADONG	O. SATIVA	20-APR-79		MYS		WADA	G.		
79802	ADONG	O. SATIVA	29-DEC-89		MYS		VAUGHAN	C/O DUNCAN A.	Т	MARDI
79803	ADONG	O. SATIVA	29-DEC-89		MYS		VAUGHAN	C/O DUNCAN A.	Т	MARDI
79804	ADONG	O. SATIVA	29-DEC-89		MYS		VAUGHAN	C/O DUNCAN A.	т	INTERNATIONAL RICE RESEARCH INSTITUTE (IRR
79804	ADONG	O. SATIVA	29-DEC-89		MYS		VAUGHAN	C/O DUNGAN A.	T	ARC
60201	ADONG HITAM(H)	O. SATIVA	23-MAR-82		MYS		WADA	G.		
71481	ADONG PULUT	O. SATIVA	11-APR-85	ARC 1240	MYS		TSEU	CHRISTOPHER	т	AGRICULTURE RESEARCH CENTRE, TUARAN, SABAH
71481	ADONG PULUT	O. SATIVA	11-APR-85	MARDI NO. 5582	MYS		TSEU	CHRISTOPHER	т	AGRICULTURE RESEARCH CENTRE, TUARAN, SABAH
71481	ADONG PULUT	O. SATIVA	11-APR-85	ARC 1240	MYS		TSEU	CHRISTOPHER	To	AGRICULTURE RESEARCH CENTRE, TUARAN, SABAH
71481	ADONG PULUT	O. SATIVA	11-APR-85	MARDI NO. 5582	MYS		TSEU	CHRISTOPHER	т	AGRICULTURE RESEARCH CENTRE, TUARAN, SABAH
71481	ADONG PULUT	O. SATIVA	11-APR-85	MARDI NO. 5582	MYS		TSEU	CHRISTOPHER	Т	INTERNATIONAL RICE RESEARCH INSTITUTE (IRR

Genebank Needs

- ICIS module that handles germination result/ viability data
 - Viability and seed inventory data always go together (i.e. selection of planting material for regeneration and distribution)
 - Should it be a variate?
 - Another object in IMS?
 - Or a field in IMS_LOT?

Other Genebank Concepts not yet in ICIS

- Taxonomy
 - Status: Uses SCALEDIS
- Mission
 - Status: Stored as an attribute value
 - Funding agency, country, start date, end data

Current Activities

- Test and implement full migration of GRIMS backend database from Oracle to PostgreSQL
- Use of hand-held device for field trials
- Improve the data quality of genebank data in IRIS especially for the germplasm group and source information
- Integration of documents and images to IRIS
- Integration of Herbarium Database to IRIS
 - Inherits MGID's passport data

Acknowledgement

- Dr. Ruaraidh Sackville Hamilton
- Dr. Thomas Metz
- Corina Habito
- Adel Alcantara
- Pola de Guzman
- Soccie Almazan
- Ato Reaño

Thank you!

