

### **A Molecular Breeding Platform**

Portal, Information System, Toolbox and Services

Graham McLaren 17/02/09



### **Rationale**

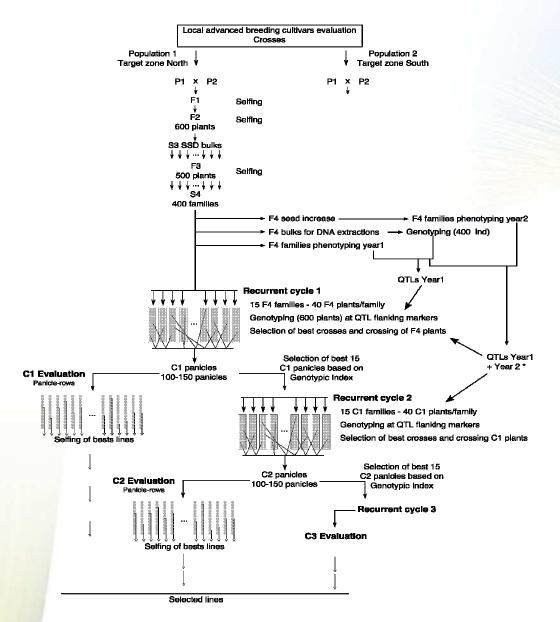


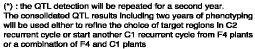
- revolutions in molecular biology and information technology offer opportunities for enhancing plant breeding
- successfully deployed in the private sector but are not generally used in the public sector and hardly ever in developing countries
- It is time to provide the appropriate support tools, services and infrastructure to offer breeding programmes in developing countries access to modern marker breeding technologies





- Develop and deploy a functional and sustainable molecular breeding platform
  - providing access to molecular breeding services,
  - an information system and a
  - toolbox of analysis and decision support applications





### **Use case projects**

- Beans: Improving tropical legume productivity for marginal environments in sub-Saharan Africa (Tropical Legumes I, Gates Foundation–GCP project, Mathew Blair, CIAT)
- Chickpeas: Improving tropical legume productivity for marginal environments in sub-Saharan Africa (Tropical Legumes I, Gates Foundation–GCP project, Pooran Gaur, ICRISAT)
- Cowpeas: Improving tropical legume productivity for marginal environments in sub-Saharan Africa (Tropical Legumes I, Gates Foundation–GCP project, Jeff Ehlers, University of California–Riverside)
- Maize: Drought-tolerant maize for Africa, (Gates Foundation project, Gary Atlin, CIMMYT)
- Maize: Drought-tolerant maize for Asia (GCP project, Pervez Zaidi, CIMMYT)
- Rice: Stress-tolerant rice for poor farmers in Africa and South Asia (Gates Foundation project, David Mackill, IRRI)
- Rice: Drought-tolerant rice for China (Gates Foundation project, Zhikang Li, CAAS–IRRI)
- Sorghum: Yield improvement of sorghum in Africa through marker-assisted recurrent selection (GCP project, Jean-François Rami, CIRAD)
- Wheat: Molecular marker technologies for faster wheat breeding in India (ACIAR project, Richard Trethowan, Sydney University)
- Wheat: Durable rust resistance in wheat (Gates Foundation project, Mike Pumphrey, USDA/Cornell University)

|                                        |      | 2008 |              |     |     |         |     |      | 2     | 009 | 9     |     |      |     |     |     |     |       | 20    | 10       |     |     |     |       |        |     |     | 20   | 11  |     |     |     |     | 2012 |            |     |        |     |      |     |     |          |
|----------------------------------------|------|------|--------------|-----|-----|---------|-----|------|-------|-----|-------|-----|------|-----|-----|-----|-----|-------|-------|----------|-----|-----|-----|-------|--------|-----|-----|------|-----|-----|-----|-----|-----|------|------------|-----|--------|-----|------|-----|-----|----------|
|                                        | Ties | 100  | Aug          | Sep | Nov | Dec     | Jan | Mar  | Apr   | May | Jul.  | Aug | Sep  | No. | Dec | Jan | Feb | Mar   | May   | Jun      | Jul | Sep | Oct | No.   | Jan    | Feb | Mar | Apr  | Jun | lut | Aug | Oct | Nov | Dec  | Jan<br>Feb | Mar | Apr    | May | Jul. | Aug | Oct | Nov      |
| Sowing of parents                      |      |      |              | - V |     | 0.00    |     |      | 100   |     | A STA |     | - V  | 8   |     |     |     |       | 90    | SHIP AND |     |     |     |       |        |     |     | 3    | 100 |     |     | 0   |     |      |            |     |        | 7   |      |     | 0   |          |
| Field phenotyping of parents           |      |      |              |     |     | П       |     |      | Т     |     |       |     |      |     |     | П   |     |       | Т     |          |     |     |     | П     | Т      | П   |     |      |     |     |     |     |     | П    |            |     | П      |     |      |     |     | П        |
| Crosses                                |      | 1    |              |     | 8   | 300 3   | 6 6 | - 8  | 38. 8 |     | 9     |     | -0   | ×   | 100 | 8 8 | - 8 | (185  | 86.0  |          | 1   | 7   |     | Ø 180 | 4      |     | 8 8 | 5.86 |     | 1   |     | (1) | 8 1 | W 3  | - 9        | 8 1 | 85.88  |     | 1    |     | 70  | 8 6      |
| F1 harvest                             |      |      |              |     |     |         |     | - 8  |       |     |       |     |      | - 6 |     |     |     |       | 2     |          |     |     |     |       |        |     |     | 7    |     |     |     |     |     |      |            |     |        |     |      |     |     |          |
| Sowing of F1                           |      | î    |              |     |     |         |     | T)   |       |     | î     |     |      | Ţ.  |     |     |     |       |       |          |     |     |     |       | 1      |     |     |      |     |     |     | 1   |     | 8 3  |            |     |        |     |      |     | 1   |          |
| F2 Harvest                             |      |      |              |     |     |         |     | Î    |       |     |       |     |      |     |     |     |     |       |       |          |     |     |     |       |        |     |     |      |     |     |     |     |     |      |            |     |        |     |      |     |     |          |
| Sowing of F2                           |      |      |              |     | Ü   |         |     |      | 10.5  |     |       |     |      |     |     |     |     |       | 3     |          |     |     |     |       |        |     |     |      |     |     |     |     |     | 2 7  |            |     |        |     |      |     |     |          |
| F3 Harvest                             |      |      |              |     |     |         |     |      |       |     |       |     |      |     |     |     |     |       |       |          |     |     |     |       |        |     |     |      |     |     |     |     |     |      |            |     |        |     |      |     |     |          |
| Sowing of F3                           |      |      |              |     |     |         |     |      | 15.5  |     |       |     |      |     |     |     |     | - les | 94.   |          |     |     |     |       |        |     |     |      |     |     |     | 30  |     |      |            |     | 65 540 |     |      |     | 0   |          |
| F4 Harvest                             |      | T    |              |     |     | П       |     |      |       |     |       |     |      |     |     | П   |     |       |       |          |     | 1   |     |       | T      | П   |     |      |     |     |     |     |     | П    |            |     | П      |     |      |     |     |          |
| DNA production of F3 plants (F4 bulks) |      | 4    |              |     | 8   | 900     | 8 8 | - 8  | 36. 8 |     | 9     |     |      | - K | 100 | 8 8 |     |       | 1     |          | 7   | 1   | 45  | 8 10  |        | 3   | 8 8 | 2.36 |     |     |     | 2// | 8 1 |      | - 9        | 8 3 | 8 8    |     | 1    |     | -00 | 8 8      |
| Genotyping of F3 plants                |      | Ť    |              |     | Ť   |         |     | - 12 | ***   |     | Ť     |     |      | -8  | *   |     |     |       |       |          |     |     |     | 2-10  | 1      |     |     | 7    | - 1 |     |     | 7   |     |      |            | 80  |        | -7  |      |     | 7   |          |
| Multilocal phenotyping of F4 families  |      |      |              | -3  | Ĩ.  | 12      |     | 1    | 18.3  |     |       |     |      | Ĩ.  |     |     |     |       |       |          |     |     |     |       |        |     |     |      |     |     |     | 3   |     |      |            | 1   |        |     |      |     | 3   |          |
| Recurrent Cycle 1 (C1)                 |      |      |              |     | j)  |         |     |      |       |     |       |     |      |     |     |     |     |       |       |          |     |     |     | П     |        |     |     |      |     |     |     |     |     |      |            |     |        |     |      |     |     |          |
| C1 Genotyping                          |      | İ    |              |     | Ü   |         |     | 7    | 10.5  |     | ı     |     |      | Ü   |     |     |     |       |       |          |     |     |     |       | T      |     |     |      |     |     |     |     |     |      |            |     | 2 3    |     |      |     |     |          |
| Recurrent Cycle 2 (C2)                 |      |      |              |     |     |         |     |      |       |     | Ī     |     |      |     | T   |     |     |       |       |          |     |     |     |       | 1      |     |     |      |     |     |     | Ü   |     |      |            |     |        |     |      |     |     |          |
| C2 Genotyping                          |      |      |              | - 0 |     |         |     | - 3  | 105 5 |     |       |     |      |     |     |     |     | , s   | 90.   |          |     |     |     |       |        |     |     |      |     |     |     | 0   |     |      |            |     | es 50  |     |      |     | .0  |          |
| Observation of C1                      |      |      |              |     |     | П       |     |      |       |     |       |     |      |     |     | Ħ   |     |       |       |          |     |     |     |       | $\top$ | П   |     |      |     |     |     |     |     | T    |            |     |        |     |      |     |     |          |
| Recurrent Cycle 3 (C3)                 |      | 4    |              |     | 8   | \$ C. 3 | 8 8 | - 8  | 38. 8 |     | 9     |     | - 20 | Ŕ   | 100 | - 9 | - 8 | - 9%  | 88. 0 |          | 1   | 7   |     | Ø 180 | 4      | 3   | 8 9 | 283  | -   |     |     | 2)  |     | 4    | The second |     | 8 8    |     |      |     | 20  | 8 6      |
| C3 Genotyping                          |      |      |              |     | -   |         |     | - 8  |       |     |       |     |      | -8  | *   |     |     |       | 2     |          |     |     |     |       |        |     |     | 7    |     |     |     | 4   | 4   |      |            |     |        |     |      |     | 4   |          |
| Observation of C1,C2,C3                | 1    |      |              | 3   | 1   |         | 3   | 1    | 18.3  |     |       |     | -8   | Ĭ   |     |     |     |       |       |          |     |     | 8   |       | -      |     |     |      |     |     |     | -3  | G-  | V 4  |            | ř.  | 8 3    |     |      |     | ď   |          |
| Information system                     |      |      | -/1 <u>-</u> | Th  | ie  | S       | 0   | rg   | h     | ur  | n     | us  | se   | ) ( | ca  | S   | e:  |       | Îr    | n        | or  | O   | vе  | 9 8   | 0      | rg  | jh  | uı   | n   | p   | rc  | od  | u   | ct   | ivi        | ty  | / i    | n   | SI   | ıb  | -   | 411 - 30 |

|                                     | -/- |                   | Th     | ne       | SC    | orc | ηĽ    | ur     | $\mathbf{m}$ | u     | se    | <b>C</b> | ca    | SE  | Э:         | "      | lm   | I   | ro      | VE    | S                      | or     | al   | hu    | m   | р                | ro   | dı  | uC      | tiv  | 'it\ | / İ              | n  | SU       | ıb-      | - |          |
|-------------------------------------|-----|-------------------|--------|----------|-------|-----|-------|--------|--------------|-------|-------|----------|-------|-----|------------|--------|------|-----|---------|-------|------------------------|--------|------|-------|-----|------------------|------|-----|---------|------|------|------------------|----|----------|----------|---|----------|
| Information system                  |     |                   |        |          |       |     |       |        |              |       |       |          |       |     |            |        |      |     |         |       |                        |        |      |       |     |                  |      |     |         |      |      |                  |    |          |          |   |          |
| Tool box                            | 0 0 | 15 - 51 <u>- </u> | Sa     | ana      | ar    | an  | ı e   | ;N     | VI           | ro    | nr    | ne       | er    | ITS | <b>3</b> ( | Ŋ      | IVI  | aı  | II J    | .nı   | Ol                     | Jg     | n.   | In    | te( | gra              | at   | ec  | וג      | ///  | ١K   | .5               | ** | 53 73    | 100 2    |   |          |
| Pedigree information management     |     |                   |        |          |       |     |       |        |              |       |       |          |       |     |            |        |      |     |         |       |                        |        |      |       |     |                  |      |     |         |      |      |                  |    |          |          |   |          |
| Field Data management               | 0   |                   |        | 8 7      |       |     | 3 105 | 98 0   |              | 165   |       | 8        | 105 3 | 0   | 4          | 48 8   |      |     |         | V     |                        | . /    |      | 45.5  |     | 100              |      |     | 8 18    | 8 0  | 4    | 15 98            |    |          |          |   | 45 3     |
| Laboratory information management   |     |                   |        |          |       |     |       |        |              |       |       |          |       |     |            |        |      |     |         |       |                        | -      |      |       |     |                  |      |     |         |      |      | П                |    |          |          |   |          |
| Analysis and decision support tools |     | 3 (8)             | W-9    | 8 1      | Y S   | 9   |       | 85. 8  |              | - 100 | 8 9   |          | 300.3 | 3 0 | 8          | 98. 8  | 9    | 100 | 85. 85  | 3     |                        |        |      |       |     |                  |      |     |         | 9    | 8    | 85.88            | 3  | 8 10     | - 36 - 3 |   | 100 20   |
| Services                            | 3   |                   | 770-77 | - 30 - 3 | S-98- |     | 0 10  | 275-27 | - 33         |       | 27 37 | - 37     | 100   | -5% |            | 78 9   | 7.00 |     | 10      | 100   | -30                    |        | - 10 | 71    |     |                  |      | 207 | - Y     | - 27 |      | 200-220          | 50 | 23/2/8   | -32/     |   | -70-1    |
| Breeding services                   |     |                   |        |          |       |     |       |        |              |       |       |          |       |     |            |        |      |     |         |       |                        |        |      |       |     |                  |      |     |         |      |      |                  |    |          |          |   |          |
| GRSS                                |     |                   |        | 8 1      |       |     |       | 85. 8  |              | - 80  | 8 3   | - 8      | 98.3  | 3 0 | 8          | 185 8  | 9    | 8   | 85. 28. | 9     | \$ 90<br>9             | 35. 0  | 8    | -82.3 | 3   | 8 8              | - 88 | 9   | 8 98    | 8 8  | - 8  | 85-86            |    |          |          |   | 10.2     |
| Marker service Laboratories         |     |                   |        |          |       |     |       |        |              |       |       | Î        |       |     | Ű          |        |      |     |         | Î     |                        |        |      |       |     |                  |      |     |         |      |      |                  |    |          |          |   |          |
| Trait service laboratories          |     |                   |        |          |       |     |       |        |              |       |       | Ű        | 100   |     | Ű          | 185    |      | 8   | 8 35    |       |                        |        |      | 18.5  |     |                  |      |     |         |      |      |                  | j  |          |          |   |          |
| Support Services                    |     |                   |        |          |       |     |       | 0      |              |       | 0     |          |       |     |            | -00-0  |      |     | W-0-    | - 12- | 410 - 151<br>-05 - 255 | 3 - 32 |      |       |     | -11-10<br>-01-10 |      | 127 | 07-302- |      |      | 500-00<br>500-00 |    | -01 -000 | -00-1    | 2 | -300-3   |
| Information management              |     |                   |        | 9        |       |     |       |        |              |       |       | Q.       | 40. 3 |     | 10         | 18 2   |      | 2   | 8 20    | Į.    | 2 12                   |        |      | 10.0  |     |                  |      |     |         |      |      |                  |    |          |          |   |          |
| Data curation                       |     |                   |        |          |       |     |       |        |              |       |       |          |       |     |            |        |      |     |         | I.    |                        |        |      | 36    |     |                  |      |     |         |      |      |                  |    |          |          |   |          |
| Design and analysis                 | 0   | 6 16              | 9. J   | 6        |       |     | 3 10  | 95 8   |              | 45    |       | - 1      | 765 3 |     | 8          | 105 5  | , J  | 8   | 65 98   | Į.    | 8 18                   | 30     | - 8  | 48.5  |     | 8 8              | 5 98 |     | S 165   |      | - 8  | NS 98            |    | \$ 18    | 90       |   | - 45 5   |
| IP and policy                       |     |                   |        |          |       |     |       |        |              |       |       |          |       |     |            |        |      |     |         |       |                        |        |      |       |     |                  |      |     |         |      |      |                  |    |          |          |   |          |
| Genotyping support service          |     |                   | 4-9-   | 8 1      |       | 9   | 3 10  | 26. 20 |              | 18    | 8 3   | - 8      | 98 3  | 3 0 | Q.         | 100 50 |      | 8   | 85 98   | 8     | 8 90                   | 35 9   |      | 18.3  |     | 80.36            |      | 9   | ( )()   |      | - 4  | 82-80            | 1  | K 184    | 700      |   | - 10 - 2 |
| Training activities                 |     |                   |        |          |       |     |       |        |              |       |       |          |       |     |            |        |      |     |         | Ï     |                        |        |      | 78    |     |                  |      |     |         |      |      |                  |    |          |          |   |          |







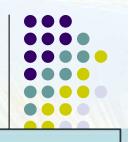
### **Major outputs**



- A Molecular Breeding Portal
  - A web-based interface, providing access to the platform
  - A help desk providing assistance to portal users
- An Information System
  - A modular information system
  - A middleware layer of software which integrates data
  - Accumulation of breeding data
- Services
  - Breeding Services
  - Support Services






### **Project objectives**

Objective 1.1: Establish and manage the Molecular Breeding Platform

### **Platform elements**

- 1. Molecular Breeding Portal and Helpdesk
  - Platform management
  - Molecular breeding portal
  - Helpdesk





Objective 2.1: Make existing tools for data management and breeding logistics available to molecular breeding projects through the MBP

Objective 2.2: Develop a suite of analysis, prediction and simulation tools for MAB

Objective 2.3: Develop an \_\_\_\_\_ information network, decision support tools and a workflow management system for molecular breeding

### 2. Information System

- Logistics and Data management
  - Pedigree Information Management
  - Field Data Management
  - Laboratory Information Management

### Analysis and Decision Support

- Statistical and genetic analysis
- · Cross prediction and selection
- Modeling and simulation tools
- Visualisation and decision support

### Information Network and Workflow System

- Information network infrastructure
- Public crop information
- Configurable workflow system





Objective 3.1: Provide access to critical molecular breeding services

Objective 3.2: Provide assistance with a range of molecular breeding support services

### 3. Services

### **Breeding Services**


- Genetic Resource Support Service
- Marker service laboratories
- Trait service laboratories

### Support Services

- · Business Plan development
- Information management & data curation
- Design and analysis
- Phenotyping sites & screening protocols
- · Genotyping Support Service
- IP and policy







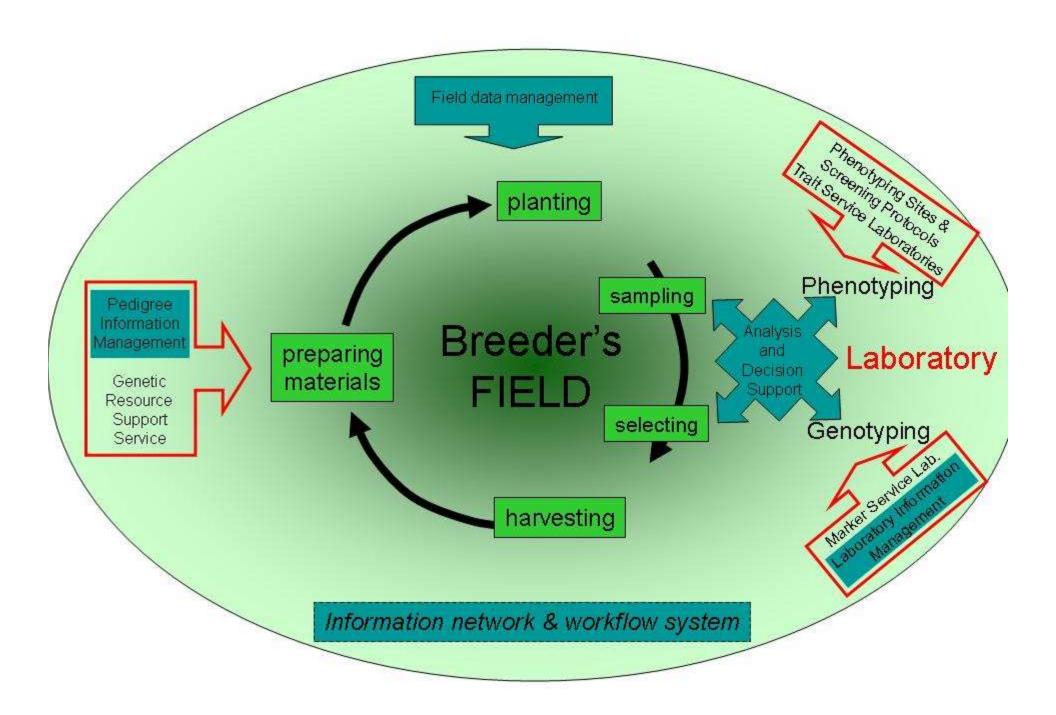
- build on infrastructure and expertise that already exists
- boost individual initiatives and to link people with complementary expertise
- work with partners with common interests in building and using a public Molecular Breeding Platform



## **Existing GCP Technology and Services**



- web technology from the GCP Informatics Platform to create the Portal,
- domain model and semantic standards for data integration,
- middleware, datasource and application programming interfaces, and web services technology,
- the Molecular Marker Information and Toolbox,
- GCP Phenotyping protocol and analysis projects,
- Genetic Resource Support Service (GRSS),
- Genotyping Support Service (GSS),
- SP4 Analysis Helpdesk, and
- IP and policy Helpdesk.



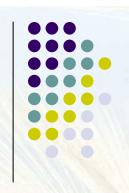

### **Platform Management**



- Platform Manager to:
  - manage the Portal and Help Desk,
  - manage the Platform Services
  - coordinate regional activities through site visits
  - coordinate human resources development
- A user committee will be constituted to
  - advise on the design of the platform elements,
  - to test different elements of the platform and
  - to provide feedback on the evolution of the portal.






# Objective 2.1 Make existing tools for data management and breeding logistics available to molecular breeding projects through the MBP.



- Identify, deploy and support tools facilitating management of germplasm lists, pedigrees, intellectual property and other passport data
- Identify, deploy and support tools for management of phenotypic characterisation and evaluation
- Identify, deploy and support tools for management of genotypic characterization

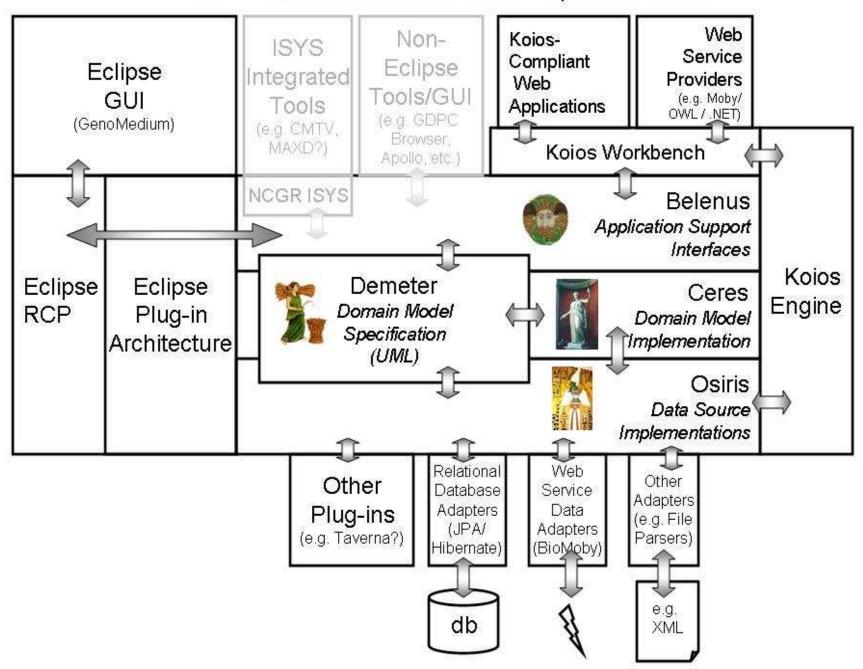


### Objective 2.2 Develop a suite of analysis, prediction and simulation tools for MAB

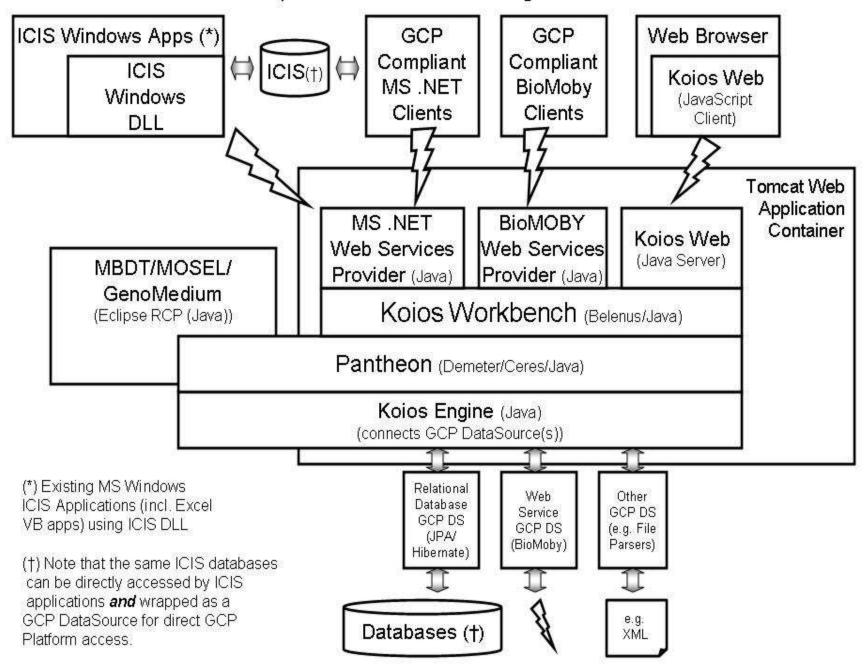


- Develop and deploy statistical and genetic analysis for molecular breeding
- Develop and deploy cross prediction and selection methodology for molecular breeding
- Develop and deploy simulation tools for complex G-E systems

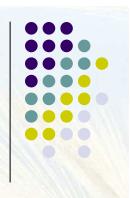



# Objective 2.3 Develop an information network, decision support applications and a workflow management system for molecular breeding




- Establish middleware infrastructure for networking databases and applications
- Develop and integrate visualisation and decision support applications
- Implement a configurable workflow system for molecular breeding

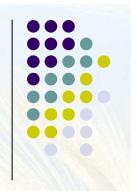



#### GCP Platform Architecture 2008 - Updated Details



#### GCP-Compliant Molecular Breeding Platform Framework

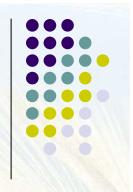



### Objective 3.1 Provide access to critical molecular breeding services.



- Genetic Resource Support Service
- Marker Services
- Trait and Metabolite Services




## Objective 3.2 Provide assistance with a range of molecular breeding support services.



- Business Plan Development
- Information Management
- Data Curation
- Design and Analysis
- Phenotyping Sites and Screening Protocols
- Genotyping Support Services
- IP Helpdesk







- The platform is technology push and not demand-driven
- The platform is not sustainable
- The platform is not adopted/used by breeders
- Access to the data generated through the platform is limited



|                 |                                                                                                           |                     | ••••       |
|-----------------|-----------------------------------------------------------------------------------------------------------|---------------------|------------|
| No              | Activity                                                                                                  | Leader              | Institute  |
| Com             | ponent 1 – Molecular Breeding                                                                             | Portal and Helpdes  | k          |
| Objec<br>Platfo | ctive 1.1: Establish and Manage to                                                                        | the Molecular Breed | ling       |
|                 | 1.1.1 Establishment of the molecular breeding platform                                                    | Graham McLaren      | GCP        |
|                 | 1.1.2 Develop and deploy the molecular breeding portal                                                    | Platform Manager    | GCP        |
|                 | 1.1.3 Establish molecular breeding platform helpdesk and coordinate training and communication activities | Platform Manager    | GCP        |
|                 | communication activities                                                                                  |                     | Generation |

### **Component 2 – Information System**

### Objective 2.1 Make existing tools for data management and breeding logistics available to molecular breeding projects through the MBP

| 2.1.1 Identify, deploy and support tools facilitating management of germplasm lists, pedigrees, intellectual property and other passport data) | Fran Clarke<br>Shawn Yates | AAFC                  |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------|
| 2.1.2 Identify, deploy and support tools for management of phenotypic characterization and evaluation                                          | Arllet Portugal            | CIMMY<br>T            |
| 2.1.3 Identify, deploy and support tools for management of genotypic characterisation                                                          | Jayashree B                | ICRISAT<br>Generation |

| 2.2.1 Develop and deploy statistical and genetic analysis for molecular breeding           | Fred van Eeuwijk | WUR  |
|--------------------------------------------------------------------------------------------|------------------|------|
| 2.2.2 Develop and deploy cross prediction and selection methodology for molecular breeding | Alain Charcosset | INRA |
| 2.2.3 Develop and deploy simulation tools for complex G-E systems                          | Mark Dieters     | UoQ  |

## Objective 2.3 Develop an information network, decision supported and a workflow management system and for molecular breeding

| 2.3.1 Establish middleware infrastructure for networking databases and applications  | M Senger                                                                                                                                                                                                     | IRRI                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.3.2 Integration and development of visualisation and decision support applications | Guy Davenport                                                                                                                                                                                                | CIMMY                                                                                                                                                                                                                             |
| 2.3.3 Implement a configurable workflow system for molecular breeding                | Richard<br>Bruskiewich                                                                                                                                                                                       | IRRI                                                                                                                                                                                                                              |
|                                                                                      | infrastructure for networking databases and applications  2.3.2 Integration and development of visualisation and decision support applications  2.3.3 Implement a configurable workflow system for molecular | infrastructure for networking databases and applications  2.3.2 Integration and development of visualisation and decision support applications  2.3.3 Implement a configurable workflow system for molecular  Richard Bruskiewich |

### **Component 3 – Services**

### Objective 3.1 Provide access to critical molecular breeding services

| 3.1.1 Genetic Resource<br>Support Service | JC Glaszmann         | GCP |
|-------------------------------------------|----------------------|-----|
| 3.1.2. Marker Services                    | H Gómez-<br>Paniagua | GCP |
| 3.1.3 Trait and metabolite services       | SP3 Leader           | GCP |

## Objective 3.2 Provide assistance with a range of molecular breeding support services 3.2.1 Business Plan Platform Manager G

|     | 11                                      |                      |                   |
|-----|-----------------------------------------|----------------------|-------------------|
|     | 1 Business Plan<br>velopment            | Platform Manager     | GCP               |
| 3.2 | 2 Information Management                | T Metz               | IRRI              |
| 3.2 | 3 Data Curation                         | T Metz               | IRRI              |
| 3.2 | 4 Design and Analysis                   | F van Eeuwijk        | WUR               |
|     | 5 Phenotyping sites and ening protocols | SP3 Leader           | GCP               |
|     | 6 Genotyping Support vice               | H Gómez-<br>Paniagua | GCP               |
| 3.2 | 7 IP Helpdesk                           | H Gómez-<br>Paniagua | GCP<br>Generation |