

Rice Gene Machine Information Management System (RGMIMS)

Leakha Henry (Software Engineer) Bioinformatics for Agribusiness, CSIRO Mathematical and Information Sciences

Presentation to ICIS Developer Workshop 2006 15-19 May 2006

Introduction to RGMIMS

- A product of the collaboration between CSIRO Plant Industry Rice Functional Genomics Project and CSIRO Mathematical and Information Sciences.
- A Laboratory Information Management System (LIMS) for plant functional genomics, particularly rice mutagenesis.
 - Helps biologists, lab managers and technicians manage the high volume of data generated by large-scale, high-throughput rice insertional experiments.

Comprises software and laboratory processes

Currently operational in a wet-laboratory

The system components are

- A Web based desktop system integrated with barcode devices and sequence preprocessing software
- Palm device applications for the "mobile worker" for activities including phenotyping, harvesting....
- Web-pages with dynamic, up-to-date and consolidated information on mutant lines

- Modular system implemented incrementally
- CSIRO is looking for opportunities to collaborate to continue the development of RGMIMS as a generic LIMS to increase its rate of adoption and impact.
 - Initially developed for the Rice Gene Machine Project at CSIRO and their external collaborators, keeping in mind its possible applications in other areas.
 - Developed with financial support from NSW Agricultural Genomics Center, which ends in June 2006.

The Benefits of RGMIMS as Perceived By The Users

- Designed with biologists' requirements in mind.
- Better data integration and management.
- Generally the UI is easy to use, unambiguous and intuitive and facilitates high-volume data entry.
- Enforces data quality and consistency through in-built errorchecking based on lab procedures.
- Makes information accessible.
- Provides a "single source of truth" through centralised data storage.
- Provides specimen traceability and barcode tracking.
- Integrates experimental data with external data sources, including
 - Ontologies Plant Ontology's Anatomical and Development Stage Ontologie; Gramene's Trait and Environment Ontologies
 - NCBI's Species Taxonomy

RGMIMS Software Development Features

- Develop software modules and functionality based on the model of the laboratory's workflow and the model of laboratory requirements
- Develop modules iteratively and incrementally and focusing first on user determined high priority use cases / functionality
- Model laboratory object (concepts/entities) and their relations
- Evolutionary approach to a working system begin with prototype GUI to validate requirements & to reduce risk of rework. Rework can delay the project considerably. However there is still the potential for rework once the users start using the system extensively.
- Produce business process workflows, workflow integrated with system functionality.
- Conduct unit, system and acceptance testing to ensure quality software and software passes acceptance criteria.
- Incremental conversion of legacy data.

Development environment

- Complex and rich system functionality.
- Development team
 - 1 full time staff performing multiple roles of project manager, software developer and business analyst
 - A team of domain experts (research scientists, lab manager and technicians).
- Development tools Apache Tomcat 5; SQLServer 2000; Ant build; Java 1.5; Java Help 2.0 to build online help; Design Patterns; CVS; JBuilder

Online Demo

Acknowledgements

Kerrie Ramm, Qianhao Zhu, Ramesh Bhat, Liz Dennis and Narayana M. Upadhyaya (CSIRO Plant Industry Rice Functional Genomics Group) www.pi.csiro.au/fgrttpub

Russell Heywood, Lynette Rampling, Tanya Phongkam, Colin Cavanagh (CSIRO Plant Industry Wheat Group)

David Lovell (CSIRO Mathematical and Information Sciences) www.cmis.csiro.au/bhi

www.csiro.au

Components of a phenotypic observation

 Trait (e.g., dry root weight) 	 Trait Ontology
OR	
Chemical expression pattern (e.g., from GUS/GFP)	 Presence (+) / Absence (-) Free text (qualitative values)
Observed value	 Numbers (quantitative values) with associated measurement unit
• Images •	Links to image files
Date/time of observation	 Capture date/time of observation
 In a particular anatomy (e.g., shoot) 	 Anatomy Ontology
 At a particular Development/Growth Stage (e.g., Seedling) 	 Development Ontology
 In certain Environmental Conditions (e.g., 50°C heat treated; 3.5g agar) 	 Environment Ontology Environmental Profile
 For an study initiated by xxxxx 	Experiment

4

RGMIMS Architecture Components

RGMIMS Hardware and Software Deployment Configuration

RGMIMS Modules

RGMIMS Interface To Sequence Processing Pipeline Flow (TBD)

Interaction of RGMIMS Modules In The Lab

RGMIMS Modules in the Context of ICIS Modules

Seed Mgt Use Case

Seed Mgt Use Case

Seed Mgt Use Case

Domain Models

Domain Model

Use Case Package Diagrams - Dependency

Seed Mgt Module Class Package Diagram (A Model for other modules)

