
ICIS Software Development
and Release Management

ICIS 2006 Workshop

T. Metz, IRRI

Software Release Management

• OSS philosophy: It will be released when it
is ready! (When developers are satisfied.)
– Can lead to high quality products
– No predictable release date and feature set

• Proprietary philosophy: It will be released
on schedule! (When sales/marketing
managers want it.)
– Early users can become beta testers
– More predicable availability and feature set

When should a new version of the
ICIS software be released?

• When enough changes have accumulated
– Each release has enough changes to make it

worthwhile.
– Flexible for developers, but less predictable

for users. What is more important?
• According to a release plan

– E.g. every 6 months with roadmaps for feature
development, time plan for release process
(feature freeze, testing, debugging,
documentation)

ICIS should be released according
to a formal release plan

• Formal release management can scale up
– More developers, more locations.
– Database/module interactions.
– Documentation & training materials.

• Users can plan for upgrading / training
• Aim: Distributed development & global

user community
– Is there an alternative to formal release

management?

ICIS collaborative development
platform

The ICIS System on CropForge

ICIS Communication Project
• Release (download) of

packaged ICIS software for
end-users. Only tested and
documented versions will
be released here.

• Release of ICIS full
schema scripts as well as
upgrade scripts.

• Tracking systems for bugs,
feature requests, etc. for
communication with beta-
testers and end-users.

• Forums, mailing list, news
for communication with the
global ICIS community.

The ICIS System on CropForge

ICIS Development Projects
• Projects per programming

language, with separate modules
per projects. Each module
represents a different application
(e.g. SetGen, GMSSearch).

• Source code repository
(CVS/SVN) with update
permission for developers and
read-only (anomymous) access for
everyone.

• Support provided for global ICIS
developer community.

• Lead developers are project
administrators.

• Beta versions of applications will
be released here.

ICIS Development Project (DLL)

The Role of ICISWiki

Existing
• Technical documentation

development
• Training materials

development
• Development documentation

(GRIMS)
• Community documents

New?
• ICIS release plan
• Module roadmaps

Source code management with
CVS

CVS client-server architecture
• separate server
• no shared file systems
• one server process per connection

central
repository

CVS server - CropForge

CVS client - TortoiseCVS

CVS usage model
• check out

– makes private copy in the working directory
– multiple copies and multiple versions in

different locations are possible
• modify
• update

– brings working copy up-to-date with repository
• commit

– moves changes in private copy to repository

CVS principles

check out

commit

EditCVS
repository

 developer
 sandbox

CVS versioning
• version numbering is automatic
• number is incremented every time the file is

changed

1.1 1.2 1.3 1.4

CVS principles
change A

change B

change A

change A

- one developer
- single change
- commit

- two developers
- separate changes
- merge
- commit

- two developers
- overlapping changes
- merge
- conflict resolution
- commit

change B

change A + B

CVS principles by example
Ella ChingCVS server

data.pas
 Rev. 1.1

data.pas
 Rev. 1.2

data.pas
 Rev. 1.3

data.pas

data.pas

data.pas

data.pas

data.pas

time
check out

check out

edit
update (ok)

commit

edit

update (merge)

check

commit

conflict?

8

0

4
5

2

3

6

1

7

9

ICIS release management proposal

advanced CVS

ICIS Module Development Process

5.5rc1

5.5rc2

5.6rc1

5.6rc2

5.5rc3

5.5

5.5rc4

5.5.1

5.5.2

5.5 development
 branch

5.5 stabilization

5.5 release

5.5 maintenance

5.6 development
 branch

5.5 release
 branch

Code review
Testing
Bug fixing
Documentation

Bug fixing

Tagging
Branching
Merging

Merging

Merging

5.5 feature freeze

5.6 feature freeze

5.6rc3

Tagging
- marking a moment in time -

A tag gives a label to the collection of revisions of one developer’s working copy
(the working copy should be completely up to date so the tag name is attached
to the latest revisions in the repository).
E.g. SetGen-5.5rc2, SetGen-5.5, SetGen-5.5.1
The source code can be checked out by tag.

Source: Open Source Development with CVS, Karl Fogel, ISBN: 1-932111-81-6

Tagging with TortoiseCVS

In the Tag Dialog you can enter a label
in the Tag field. A tag must start with a letter,
and may contain letters, digits, "-" (dash) and
"_" (underscore) only (no dots, no spaces).
When pressing the OK button the tag is
immediately applied to the repository, and
no commit is required.

Branching
- separate lines of development -

CVS can isolate changes onto a
separate line of development
(=branch).

The local sandbox can be switched
between branches (update special)
without maintaining multiple
versions of the source code.

Changes (commit) made to one
branch do not affect other
branches.

Branching in TortoiseCVS

A new branch of the source code of a module can be
created using the Branch command.
Branches of source code can be maintained
Independently.

Switching between tags/branches

The local sandbox will be “converted” to a selected
tag (=snapshot) of the code, or to the last version
of a branch by using the Update Special command.

Merging
- migrating changes -

Changes made in one branch
(e.g. bug fixes) may need to be
applied to another branch.

Merging between branches will
transfer such changes, e.g. from
a tag (snapshot) in the release
branch to the current version of
the development branch.

Merging can be done for files,
directories, or entire branches.

Merging in TortoiseCVS

Set the current branch (e.g. HEAD) and then go
through the Merge dialog.
In the above selection, the changes made to the
5.5 release branch between ver-5-5rc2 and ver-5-5
will be merged into the current version of the
5.6 development (HEAD) branch.

Release Manager

• Announce events (feature freeze, release).
• Check consistency and compatibility of

planned feature set for next release.
• Check consistency and compatibility of

implemented feature set at feature freeze.
• Package the release.

Conclusions

• The platforms for collaborative ICIS
development, release, and support are in
place, but not fully utilized.

• We need more formal plans, procedures,
and standards.

• We need additional skills and experience.
• We need to develop more good habits.

References

• Producing Open Source Software, Karl Fogel, 2006.
Creative Commons License
http://www.producingoss.com/producingoss.pdf

• Open Source Development with CVS, Karl Fogel, 2003.
General Public License
http://cvsbook.red-bean.com/OSDevWithCVS_3E.pdf

• Version Management with CVS, Per Cederqvist, 2005.
Free Software Foundation Open Content License
http://ftp.gnu.org/non-gnu/cvs/source/stable/1.11.21/cederqvist-1.11.21.pdf

• TortoiseCVS – software, online help, admin guide
General Public License
http://www.tortoisecvs.org
http://www.cvsnt.org/CVS_Administration_Guide.pdf

http://www.producingoss.com/producingoss.pdf
http://www.producingoss.com/producingoss.pdf
http://cvsbook.red-bean.com/OSDevWithCVS_3E.pdf
http://ftp.gnu.org/non-gnu/cvs/source/stable/1.11.21/cederqvist-1.11.21.pdf
http://www.tortoisecvs.org/
http://www.cvsnt.org/CVS_Administration_Guide.pdf

